Finally! Tracking CRAN packages downloads

[Update June 12: Data.tables functions have been improved (thanks to a comment by Matthew Dowle); for a similar approach see also Tal Galili’s post]

The guys from RStudio now provide CRAN download logs (see also this blog post). Great work!

I always asked myself, how many people actually download my packages. Now I finally can get an answer (… with some anxiety to get frustrated 😉
Here are the complete, self-contained R scripts to analyze these log data:

Step 1: Download all log files in a subfolder (this steps takes a couple of minutes)

## ======================================================================
## Step 1: Download all log files
## ======================================================================

# Here's an easy way to get all the URLs in R
start <- as.Date('2012-10-01')
today <- as.Date('2013-06-10')

all_days <- seq(start, today, by = 'day')
 
year <- as.POSIXlt(all_days)$year + 1900
urls <- paste0('http://cran-logs.rstudio.com/', year, '/', all_days, '.csv.gz')
 
# only download the files you don't have:
missing_days <- setdiff(as.character(all_days), tools::file_path_sans_ext(dir("CRANlogs"), TRUE))
 
dir.create("CRANlogs")
for (i in 1:length(missing_days)) {
  print(paste0(i, "/", length(missing_days)))
  download.file(urls[i], paste0('CRANlogs/', missing_days[i], '.csv.gz'))
}

 
 

Step 2: Combine all daily files into one big data table (this steps also takes a couple of minutes…)

## ======================================================================
## Step 2: Load single data files into one big data.table
## ======================================================================
 
file_list <- list.files("CRANlogs", full.names=TRUE)

logs <- list()
for (file in file_list) {
    print(paste("Reading", file, "..."))
    logs[[file]] <- read.table(file, header = TRUE, sep = ",", quote = """,
         dec = "
.", fill = TRUE, comment.char = "", as.is=TRUE)
}

# rbind together all files
library(data.table)
dat <- rbindlist(logs)

# add some keys and define variable types
dat[, date:=as.Date(date)]
dat[, package:=factor(package)]
dat[, country:=factor(country)]
dat[, weekday:=weekdays(date)]
dat[, week:=strftime(as.POSIXlt(date),format="
%Y-%W")]

setkey(dat, package, date, week, country)

save(dat, file="
CRANlogs/CRANlogs.RData")

# for later analyses: load the saved data.table
# load("
CRANlogs/CRANlogs.RData")

 
 

Step 3: Analyze it!

## ======================================================================
## Step 3: Analyze it!
## ======================================================================

library(ggplot2)
library(plyr)

str(dat)

# Overall downloads of packages
d1 <- dat[, length(week), by=package]
d1 <- d1[order(V1), ]
d1[package=="TripleR", ]
d1[package=="psych", ]

# plot 1: Compare downloads of selected packages on a weekly basis
agg1 <- dat[J(c("TripleR", "RSA")), length(unique(ip_id)), by=c("week", "package")]

ggplot(agg1, aes(x=week, y=V1, color=package, group=package)) + geom_line() + ylab("Downloads") + theme_bw() + theme(axis.text.x  = element_text(angle=90, size=8, vjust=0.5))


agg1 <- dat[J(c("psych", "TripleR", "RSA")), length(unique(ip_id)), by=c("week", "package")]

ggplot(agg1, aes(x=week, y=V1, color=package, group=package)) + geom_line() + ylab("Downloads") + theme_bw() + theme(axis.text.x  = element_text(angle=90, size=8, vjust=0.5))

 
 
Here are my two packages,

TripleR

and

RSA

. Actually, ~30 downloads per week (from this single mirror) is much more than I’ve expected!Bildschirmfoto 2013-06-11 um 14.11.30

 

To put things in perspective: package

psych

included in the plot:

Bildschirmfoto 2013-06-11 um 14.11.43

Some psychological sidenotes on social comparisons:

  • Downward comparisons enhance well-being, extreme upward comparisons are detrimental. Hence, do never include
    ggplot2

    into your graphic!

  • Upward comparisons instigate your achievement motive, and give you drive to get better. Hence, select some packages, which are slightly above your own.
  • Of course, things are a bit more complicated than that …

All source code on this post is licensed under the FreeBSD license.

Comments (27) | Trackback

Send this to a friend

© 2018 Felix Schönbrodt | Impressum | Datenschutz | Contact