For the presentation of norm values, often stanines are used (standard nine). These values mark a person’s relativ position in comparison to the sample or to norm values.
According to Wikipedia:
The underlying basis for obtaining stanines is that a normal distribution is divided into nine intervals, each of which has a width of 0.5 standard deviations excluding the first and last, which are just the remainder (the tails of the distribution). The mean lies at the centre of the fifth interval.
For illustration purposes, I wanted to plot the regions of the stanine values in the standard normal distribution – here’s the result:
First: Calculate the stanine boundaries and draw the normal curve:
Next: Calculate the shaded regions and plot a polygon for each region:
And finally: add some legends to the plot:
And finally, here’s a short script for shading only one region (e.g., the lower 2.5%):
This is the evolution of a bivariate correlation between two questionnaire scales, “hope of power” and “fear of losing control”. Both scales were administered in an open online study. The video shows how the correlation evolves from r = .69*** (n=20) to r = .26*** (n=271). It does not stabilize until n = 150.
Data has not been rearranged – it is the random order how participants dropped into the study. This had been a rather extreme case of an unstable correlation – other scales in this study were stable right from the beginning. Maybe this video could help as an anecdotal caveat for a careful interpretation of correlations with small n’s (and with ‘small’ I mean n < 100) …
The evolution of correlations from Felix Schönbrodt on Vimeo.
Send this to a friend