German Psychological Society fully embraces open data, gives detailed recommendations

tl;dr: The German Psychological Society developed and adopted new recommendations for data sharing that fully embrace openness, transparency and scientific integrity. Key message is that raw data are an essential part of an empirical publication and must be openly shared. The recommendations also give very practical advice on how to implement these values, such as “When should data providers be asked to be co-authors in a data reuse project?” and “How to deal with participant privacy?”.

In the last year, the discussion in our field moved from “Do we have a replication crisis?” towards “Yes, we have a problem, and what can and should we change? How can be implement it?”. I think that we need both top-down changes on an institutional level, combined with bottom-up approaches, such as local Open Science Initiatives. Here, I want to present one big institutional change concerning open data.

Funders Start Requiring Open Data: Recommendations for Psychology

The German Research Foundation (DFG), the largest public funder of research in Germany, updated their policy on data sharing, which can be summarized in a single sentence: Publicly funded research, including the raw data, belongs to the public. Consequently, all research data from a DFG funded project should be made open immediately, or at least a couple of months after finalization of the research project (see [1] and [2]). Furthermore, the DFG asked all scientific disciplines to develop more specific guidelines which implement these principles in their respective discipline.

The German Psychological Society (Deutsche Gesellschaft für Psychologie, DGPs) installed a working group (Andrea Abele-Brehm, Mario Gollwitzer and me) who worked for one year on such recommendations for psychology.

In the development of the document, we tried to be very inclusive and to harvest the wisdom of the crowd. A first draft (Feb 2016) was discussed for 6 weeks in an internet forum where all DGPs members could comment. Based on this discussion (and many additional personal conversations), a revised version was circulated and discussed in person with a smaller group of interested members (July 2016) and a representative of the DFG. Furthermore, we had regular contact to the “Fachkollegium Psychologie” of the DFG (i.e., the group of people which decides about funding decisions in psychology; meanwhile, the members of the Fachkollegium have changed on a rotational basis). Finally, the chair persons of all sections of the DGPs and the speakers of the young members had another possibility to comment. On September 17, the recommendations were officially adopted by the society.

I think this thorough and iterative process was very important for two reasons: First, it definitely improved the quality of the document, because we got so many great ideas and comments from the members, ironing out some inconsistencies and covering some edge cases. Second, it was important in order to get people on board. As this new open data guideline of the DFG causes a major change in the way we do our everyday scientific work, we wanted to talk to and convince as many people as possible from the early steps on. Of course not every single of the >4,000 members is equally convinced, but the topic now has considerable attention in the society.

Hence, one focus was consensus and inclusivity. At the same time, we had the goal to develop bold and forward-looking guidelines that really address the current challenges of the field, and not to settle on the lowest common denominator. For this goal, we had to find a balance between several, sometimes conflicting, values.

A Fine Balance of Values

Research transparency ⬌ privacy rights. A first specialty of psychology is that we do not investigate rocks or electrons, but human subjects who have privacy rights. In a nutshell, privacy rights have to be respected, and in case of doubt they win over openness. But if data can be properly anonymized, there’s no problem in open sharing; one possibility to share non-anonymous research data are “scientific use files”, where access is restricted to scientists. If data cannot be shared due to privacy (or other) reasons, this has to be made transparent in the paper. (Hence, the recommendations are PRO compatible). The recommendations give clear guidance on privacy issues and gives practical advice, for example, on how to write your informed consent that you actually are able to share the data afterwards.

Data reuse ⬌ right of first usage. A second balance concerns an optimal reuse of data on the one hand, and the right of first usage of the original authors. In the discussion phase during the development of the recommendations, several people expressed the fear of “research parasites”, who “steal” the data from hard-working scientists. A very common gut feeling is: “The data belong to me”. But, as we are publicly funded researchers with publicly funded research projects, the answer is quite clear: the data belong to the public. There is no copyright on raw data. On the other hand, we also need incentives for original researchers to generate data in the first place. Data generators of course have the right of first usage, and the recommendations allow to extend this right by an embargo of 5 more years (see below). But at the end of the day, publicly funded research data belongs to the public, and everybody can reuse it. If data are open by default, a guideline also must discuss and define how data reuse should be handled. Our recommendations make suggestions in which cases a co-authorship should be offered to the data providers and in which cases this is not necessary.

Verification ⬌ fair treatment of original authors. Finally, research should be verifiable, but with a fair treatment of the original authors. The guidelines say that whenever a reanalysis of a data set is going to be published (and that also includes blog posts or presentations), the original authors have to be informed about this. They cannot prevent the reanalysis, but they have the chance to react to it.

Two types of data sharing

We distinguish two types of data sharing:

Type 1 data sharing means that all raw data should be openly shared that is necessary to reproduce the results reported in a paper. Hence, this can be only a subset of all available variables in the full data set: The subset which is needed to reproduce these specific results. The primary data are an essential part of an empirical publication, and a paper without that simply is not complete.

Type 2 data sharing refers to the release of the full data set of a funded research project. The DGPs recommendations claim that after the end of a DFG-funded
project all data – even data which has not yet been used for publications – should be made open. Unpublished null results, or additional, exploratory variables now have to chance to see the light and to be reused by other researchers. Experience tells that not all planned papers have been written after the official end date of a project. Therefore, the recommendations allow that the right of first usage can be extended with an embargo period of up to 5 years, where the (so far unpublished) data do not have to be made public. The embargo option only applies to data that has not yet been used for publications. Hence, typically an embargo cannot be applied to Type 1 data sharing.

Summary & the Next Steps

To summarize, I think these recommendations are the most complete, practical, and specific guidelines for data sharing in psychology to date. (Of course much more details are in the recommendations themselves). They fully embrace openness, transparency and scientific integrity. Furthermore, they do not proclaim detached ethical principles, but give very practical guidance on how to actually implement data sharing in psychology.

What are the next steps? The president of the DGPs, Prof. Conny Antoni, and the secretary Prof. Mario Gollwitzer already contacted other psychological societies (APA, APS, EAPP, EASP, EFPA, SIPS, SESP, SPSP) and introduced our recommendations. The Board of Scientific Affairs of EFPA – the European Federation of Psychologists’ Associations – already expressed its appreciation of the recommendations and will post them on their website. Furthermore, it will discuss them in an invited symposium on the European Congress of Psychology in Amsterdam this year. A mid-term goal will also be to check compatibility with existing other guidelines and to think about a harmonization of several guidelines within psychology.

As other scientific disciplines in Germany also work on their specific implementations of the DFG guidelines, it will be interesting to see whether there are common lines (although there certainly will be persisting and necessary differences between the requirements of the fields). Finally, we are in contact with the new Fachkollegium at the DFG, with the goal to see how the recommendations can and should be used in the process of funding decisions.

If your field also implements such recommendations/guidelines, don’t hesitate to contact us.

Download the Recommendations

Schönbrodt, F., Gollwitzer, M., & Abele-Brehm, A. (2017). Der Umgang mit Forschungsdaten im Fach Psychologie: Konkretisierung der DFG-Leitlinien. Psychologische Rundschau, 68, 20–35. doi:10.1026/0033-3042/a000341. [PDF German][PDF English]

(English translation by Malte Elson, Johannes Breuer, and Zoe Magraw-Mickelson)

Two meanings of priors, part II: Quantifying uncertainty about model parameters
Assessing the evidential value of journals with p-curve, R-index, TIVA, etc: A comment on Motyl et al. (2017) with new data
Comments (3) | Trackback

3 Responses to “German Psychological Society fully embraces open data, gives detailed recommendations”

  1. […] and data are not just an optional part of empirical research – they are the empirical research (the German Psychological Society agrees!). You wouldn’t accept a research report based on the promise that “theory and hypotheses are […]

  2. […] post German Psychological Society fully embraces open data, gives detailed recommendations appeared first on […]

  3. […] German Psychological Society fully embraces open data, gives detailed recommendations – Die Psychologen schreiten wieder einmal mit gutem Beispiel voran (wie sie es in der Reproduzierbarkeit schon getan haben), bekennen sich voll zu offenen Forschungsdaten und geben darüber hinaus detaillierte Empfehlungen. Felix Schönmbrodt berichtet ausführlicher. […]

Leave a Reply to Requesting data during peer review: Foot in the door, or door in the face? – The 100% CI

© 2017 Felix Schönbrodt | Impressum | Datenschutz | Contact